Retraction Note to: Sign-changing solutions to Schrödinger-Kirchhoff-type equations with critical exponent

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple Sign-changing Solutions for Kirchhoff Type Problems

This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form

متن کامل

Positive solutions for asymptotically periodic Kirchhoff-type equations with critical growth

In this paper‎, ‎we consider the following Kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{R}^{3}}|nabla u|^{2}right)Delta u+V(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{R}^{3},$ ‎$uin H^{1}(mathbb{R}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎The aim of this paper is to study the existence of positive ...

متن کامل

Sign-changing Solutions to Elliptic Second Order Equations: Glueing a Peak to a Degenerate Critical Manifold

We construct blowing-up sign-changing solutions to some nonlinear critical equations by glueing a standard bubble to a degenerate function. We develop a new method based on analyticity to perform the glueing when the critical manifold of solutions is degenerate and no Bianchi–Egnell type condition holds.

متن کامل

A Note on Additional Properties of Sign Changing Solutions to Superlinear Elliptic Equations

We obtain upper bounds for the number of nodal domains of sign changing solutions of semilinear elliptic Dirichlet problems using suitable min-max descriptions. These are consequences of a generalization of Courant’s nodal domain theorem. The solutions need not to be isolated. We also obtain information on the Morse index of solutions and the location of suband supersolutions.

متن کامل

positive solutions for asymptotically periodic kirchhoff-type equations with critical growth

in this paper‎, ‎we consider the following kirchhoff-type equations‎: ‎$-‎left(a+bint_{mathbb{r}^{3}}|nabla u|^{2}right)delta u+v(x) u=lambda$ $f(x,u)+u^{5}‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$u(x)>0‎, ‎quad mbox{in }mathbb{r}^{3},$ ‎$uin h^{1}(mathbb{r}^{3})‎ ,‎$ ‎ ‎‎‎where $a,b>0$ are constants and $lambda$ is a positive parameter‎. ‎the aim of this paper is to study the existence of positive ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2017

ISSN: 1687-1847

DOI: 10.1186/s13662-017-1162-x